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Abstract

The unsteady flow field around an oscillating cascade

of flat plates is investigated using a time-marching

Euler code. Exact solutions based on linear theory
serve as model problems to study pressure wave

propagation in the numerical solution. The

importance of using proper unsteady boundary

conditions, grid resolution and time step size is

demonstrated. Results show that an approximate

non-reflecting boundary condition based on linear

theory does a good job of minimizing reflections from
the inflow and outflow boundaries and allows the

placement of the boundaries to be closer than cases

using reflective boundary conditions. Stretching the

boundary to dampen the unsteady waves is another

way to minimize reflections. Grid clustering near the

plates does a better job of capturing the unsteady

flow field than cases using uniform grids as long as
the CFL number is less than one for a sufficient

portion of the grid. Results for various stagger angles

and oscillation frequencies show good overall

agreement with linear theory as long as the grid is

properly resolved.

Nomenclature

A Roe matrix

c chordlength, speed of sound or

unsteady characteristic variables

ACP pressure difference

coefficient,

(p_- p.)/(p,V,_lh,lk)

e energy
F,G flux vectors

hi

Ira{ }
k

M

P
Q

Re{ }
t,a:

U,V

V

x,y

v

0

GO

amplitude of oscillation for

plunging motions based on

chordlength

imaginary part of { }
semi-chord reduced

frequency, co c / (2 V 2t)
Mach number

static pressure

dependent variable vector

real part of { }
time

velocities in the x,y-

directions, respectively

total velocity

spatial coordinates

stagger angle, defined as angle

between locus of leading edge

points and y-axis
curvilinear coordinate directions

fluid density

interblade phase angle

oscillation frequency

Subscripts
1,2

-[.-

L,R

conditions at inlet/exit

upper/lower surfaces on plate

left/right of an interface

Introduction

The accurate prediction of the unsteady flow field in

turbomachinery remains a critical challenge for
predicting noise and aeroelastic response. Advanced

designs of ducted propellers for large commercial
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aircrafthaverelativelylargeshrouddiameterswith
sweptcompositeblades.Thebladcsareexpectedto
bemoreflexiblethanthebladesusedincurrent
turbofans.Blade row interaction effects will be

important for both aeroelasticity and aeroacoustics.
Analytical and experimental predictions of the

unsteady aerodynamics associated with these designs

are needed to ensure safe operation and lower noise.

While three-dimensional methods are needed for a

complete simulation of the unsteady flows associated

with swept blades, two-dimensional analyses of linear
cascades are used in practice. Aeroelastic and

aeroacoustic analyses commonly model a single blade

row responding to a gust or blade vibration. There
are a number of numerical and analytical methods

available for addressing the two-dimensional,

oscillating cascade problem. Perturbation methods

have been used the most since they do a reasonably

good job near design conditions and are inexpensive

to compute. Also, exact specification of the inflow

and outflow boundary conditions is possible. An

assumption made with all of these schemes is that the

unsteady flow field is a small perturbation of the
mean flow, which allows the unsteady flow to be
linearized. Classical linearization about a uniform

mean flow has been done by Smith (ref.1) and

Whitehead (ref.2). Verdon (ref.3), Hall/Crawley

(ref.4) and Fang/Atassi (ref.5), who account for

perturbations about a non-uniform meanflow.

Time-marching, non-linear schemes are also

available that solve the full-potential (ref.6), Euler

(refs.7-12), and Navier-Stokes (refs.8,11) equations.
These methods are needed for flows where

small-perturbation approaches are no longer valid.

However, these methods require larger amounts of

computer time compared to linearized methods. In

addition, proper treatment of the inflow and outflow

boundary conditions is difficult, but essential for

accuracy.

The objective of this paper is to investigate the

unsteady flow field around an oscillating cascade

using a time-marching Euler code. The code solves

the non-linear Euler equations using a high

resolution wave-split scheme. Only linear solutions
are sought for a simple cascade of flat plates. Using

an Euler code is overkill for this problem, but an

exact solution is known from linear theory that can be

used as a baseline for code validation. Furthermore,

fundamental studies of pressure wave propagation

using a time-marching CFD code are needed to
better understand the limitations of numerical

solutions. Choosing the proper grid resolution, time

step size and boundary conditions are important for

resolving the unsteady flow field. Modeling the linear

flow for oscillating fiat plates is a first step toward

validating a numerical solution used for aeroelasticity

and aeroacoustics, and needs to be modeled correctly

before solutions for more complex flow fields can be

considered relevant. This is particularly true for

moderate to high blade passing frequencies

associated with forced response problems in

aeroelasticity and blade row interaction problems in
aeroacoustics.

In the present work, the numerical predictions of the

unsteady aerodynamics for an oscillating cascade of

fiat plates is studied in detail. Oscillation frequencies

are chosen that are representative of blade passing

frequencies for an advanced ducted propeller design.
The importance of using the proper inflow and

outflow boundary conditions is demonstrated. The

effects of the boundary distance from the cascade,

grid distribution and time step size on the solution

are investigated.

Governing Equations and Numerical

Algorithm

The unsteady two-dimensional Euler equations
written in conservative differential form are uscd and

are transformed from a Cartesian to a

time-dependent curvilinear reference frame. This

transformation process and complete details of the

numerical algorithm are presented in references

13-17. A brief overview is given below.

The transformed equations can be written in vector
form as

_Q aF aG
--+--+--= 0 (1)
_x 0_ _q

where

Q=Jq (2a)

F=J(_,q+_xf+_yy) (2b)

G = J(q,q*qxf+nyff) (2c)
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and

q-[p,pu,pu.e] 7 (3a)

f-[pu,pu2+ p.puv,u(e+ p)] T (3/})

g-[pu,puv,pvZ+ p,v(e+ p)] T (3c)

_,, _, _y, q,. n_ and qy are the metrics and d is the
Jacobian of transformation.

These equations are discretized and solved using a

finite volume method, where cell centers are denoted

as i and j:

c)Q +5_F 5_G
3x A_ Aq

With AI_ - Aq - 1 (by definition), this becomes

(4)

_q
--= -(5,F + SjC ) (s)
,_r,

where

5.(.) = (.)..l,_- (.).-i,2. (6)

The components of the dependent vector, Q,

represent average values over a particular cell.

However, a method is needed to allow these fluxes to

be accurately represented at cell faces. As discussed

in reference 13, the method used in the present effort

is based on the one-dimensional approximate

Riemann solver of Roe (ref.18) at cell interfaces for
each coordinate direction. The method uses an

approximate equation to represent a quasilinear form
of a locally one-dimensional conservation law:

_q -- _q
c_t + A(qt' qR)_x = 0 (7)

where A (q ,, q R)is a constant matrix representative

of local cell interface conditions and is constructed

using so-called "Roe averaged" variables. The

determination of the eigensystem of A and knowing

that the change in dependent variables across an

interface is proportional to the right eigenvectors
allows first order flux formulae to be constructed.

This approach of extracting flow field information

from characteristically dictated directions is

commonly referred to as flux difference splitting
(FDS) and is applicable to multidimensional space,

so long as the assumption is made that all wave

propagation occurs normal to a particular cell

interface. To provide higher order spatial accuracy, a

corrective flux is appended to the first order flux

discussed above. In addition, in order to control

dispersive errors commonly encountered with higher

order schemes, so-called "limiters" are used to limit

components of the interface flux resulting in total

variation diminishing (TVD) schemes. All solutions

presented herein were obtained using the basic

algorithm developed in reference 13, which is

third-order accurate spatially and second-order
accurate in time.

Grid

The flow equations are solved on Cartesian H-grids.

Uniformly spaced grids are generated algebraically.

Grids with cells clustered toward the plates or

coarsened near the inflow/outflow boundaries were

generated using a two-dimensional version of the

IGB code developed by Beach (ref.19) for

turbomachinery. This grid generator uses a

hyperbolic tangent function to determine the spacing

upstream and downstream of the cascade and ensures

smooth variation in grid spacing. Once a grid is

generated for a single passage, it is stacked to form a

cascade with multiple passages.

All applications are for plunging motions of plates

with an interblade phase angle, o = 90 degrees. Based
on the direct store method presented in reference 12,

this requires four blade passages. The Euler code is

blocked such that the passage-centered H-grids and
the corresponding dependant variables are stored on

a SSD (Solid-State Storage Device) on the CRAY

computer and retrieves the information as needed.

Within one block, the lower computational boundary

contains the upper surface of one blade in the

cascade, while the upper computational boundary

contains the lower surface corresponding to the

adjacent blade. The grid from each passage is

deformed such that the grid follows the plunging

motion near the plates and the grid near the center of

the passage remains fixed. This is done using

weighting functions and is described in more detail in

reference 12. The code time-marches the grid and the

flow solution for harmonic oscillations of the plates.



Boundary Conditions

Solid Surface and Periodic Boundary

Conditions

The solid surface boundary conditions used in these
studies implement zero pressure gradient conditions.
Other forms of boundary conditions have been

investigated by Janus (ref.20) and others at
Mississippi State University and found that the zero
pressure gradient boundary conditions are sufficient
as long as the grid near the surface is adequately
resolved. The boundaries that extend upstream and

downstream of the plates are called "periodic
boundaries" for plates with harmonic motion and a
specified interblade phase angle. The Euler code
stores phantom cells on either side of these
boundaries and uses injection of the dependant
variables to specify the boundary conditions for a

given passage.

Steady Inflow and Outflow Boundary
Conditions

The far-field, steady boundary conditions are based
on characteristic variables and assume a locally one

dimensional flow at the boundary. A summary of
their derivation is given below based on reference 20.

For the sake of deriving the boundary conditions, the
Euler equations are written in their non-conservative
form:

a q + a _ + b a--_q= Oa-c aq (8)

The matrices a and b are determine through an

eigenvalue analysis. Multiplying by P i _and neglecting

the derivatives in the rl direction gives:

Pi'aq+U_ei'e_A_e;'aq_=° (9)

where A _is a diagonal matrix containing the

e igenvalues, K_;and P _and P; ' are the left and right

eigenvectors, respectively. The characteristic vector is
defined as:

Wt= Pilq (10)

P_is derived in reference 20 such that the elements of

the characteristic vector become:

wt= _ P- (lla)

w_= _jy P- (lib)

a d [p7_ +

(_,u+ %u)] (llc)

, d p 7t_

w_=_lvtl[ p,c,

(l_xu + l_yu)] (lld)

The corresponding eigenvalues are:

x_ = (_,u+ _,v)-clv_l (12d)

The implementation of the characteristic variable
boundary conditions requires knowing if the
boundary is an inflow or an outflow. Generally, this is
done by computing the sign of _. to determine the
directions of the characteristics. However, for
cascades the direction of the flow and the
characteristics at the boundaries are known. Let the

subscript "a" denote approaching a boundary, "b"
refers to on the boundary, and "!"means leaving the
boundary. For a subsonic inflow, the characteristics
approaching the boundary are set equal to the
characteristics on the boundary using Eq. 11:

[qo:)]o=E,.(o-:)].
Pl cl a

[P V_ +(_xu+_yu)]-- (13c)Pl el o



p V_ (_,,u + _yv)]p,c---_- - t =

ICI b

Solving Eqs 13(a-d) and assuming that the metrics at

the boundary are equal to the metrics at "a" and "1",

gives the following information for the flow variables

at the inflow boundary:

pb = 1/2{p_+pt+

p,ct[_x(ua-u_)+_y(vo-vt)]} (14a)

Pb -- PQ

pb=p_+ ct2 (14b)

ub = uo + _,, p"- pb (14c)
P_Cl

P_ - Pb
v b = vo + _y-- (14d)

DICI

With the non-conservative flow variables known, the

conservative dependant variables (Eq. 3a) can be

easily computed at the boundary.

The flow variables at the outflow boundary are found
in a similar manner. The characteristics on the

boundary are set equal to the characteristics leaving

the boundary. In this case, the incoming characteristic

is the upstream running pressure wave and therefore

the pressure is set equal to the pressure at "1". For

internal steady flows, this is usually specified by the
user. The non-conservative flow variables become:

P6 = P, (15a)

Pb _ PQ

pb=po+ c2_ (15b)

u_ = u,, + _x p°- Pb (15c)
PzC2

Po - Pb
vb=v,_+ _y - (1Sd)

PzC2

These characteristic variable boundary conditions are

only valid for steady flows when applied to cascades
since the outflow is assumed to have uniform static

pressure. There are a number of flow solvers today

that mistakenly use similar boundary conditions for

unsteady flows. For comparison purposes, these

boundary conditions will be call "reflective" boundary

conditions when they are later used for unsteady

flows. A better approximation for the unsteady

boundary conditions are examined next.

Unsteady Inflow and Outflow Boundary
Conditions

For unsteady flows in turbomaehinery, the exact

specification of the unsteady boundary conditions for

non-linear problems is not feasible. Approximate

"non-reflecting" boundary conditions are developed

by assuming that linear theory can be applied. A very

useful publication by Giles (Ref.21) presents the

formulation of boundary conditions for internal flows.

Much of the original theoretical work for this topic

was done by Kreiss (Ref.22). Giles has transformed

the theory into a form that can be easily implemented

in general Euler solvers for turbomachinery. The

basic implementation of this formulation determines

the steady flow using the boundary conditions derived

above and then solves the linearized Euler equations

at the boundary to determine the perturbation flow
variables in terms of the characteristic variables. This

allows time variations of static pressure at the outflow
and reduces reflections from the boundaries. A brief

summary, based on reference 21 is given below.

For the cases considered in this paper, x = _, y = rl

and t = x, so that the primitive form of the Euler

equations can be written as:

a-_u+ d e--U-U+ B e-U-U= o (15)
at 3x ay

where

U=(p,u,v,p) r (17a)

A = (17b)

0 u

yp 0

B= 0 v (17c)

0 yp

For small-perturbations from the steady flow and
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neglecting higher order terms, a linear form of the // _ 1 1

Euler equations can be written as: -I 0 _ 51_:c,'_

--+A + =0 (18) "

where U'are the perturbation variables given as, 6p 1 1 ] \c, j

\005 J
U" - (p, t_, tT,/5) r (17a)

and A, B are constant coefficient matrices based on

the steady flow variables. The non-dimensional form
of these matrices are:

u 0 (18a)
A- 0 u

1 0

o 0 (186)
B= 0 v

0 1

Following a Fourier analysis of these equations, a set

of eigenvectors representing an entropy wave, a

vorticity wave and upstream/downstream running

pressure waves can be determined. The details of this

procedure are given in reference 21. Using these

eigenvectors and assuming locally one-dimensional

flow at the boundary, the characteristic variables for

unsteady flows is written in terms of the perturbation
variables as:

(c)iioo1,:6,o 1

c, - 1 0 l y \SpJ

where 6p, 8 u, fiu and/5 t9 are the perturbations from

the steady flow.

(20)

The primitive flow variables can be found using the

following relationships:

p-po+Sp (21a)

u*uo+Su (21b)

0-00+60 (21c)

p= po + Sp (21d)

where P 0, u o, o0 and p o are determined from the

steady solution. Equation 3a is then used to
determine the conservative flow variables at the

boundaries.

Results and Discussion

A cascade of flat plates is used for studying the

unsteady flow field due to small amplitude plunging

motions. The purpose of the plunging motions is to

propagate pressure waves upstream and downstream
to study the accuracy of the CFD code and assess the

resolution of the unsteady aerodynamics. While the

blade vibration problem is usually associated with

flutter analysis, the forcing frequencies considered

will be high enough to simulate forced response
problems. The small disturbances introduced by the

plate motion allows for comparisons with classical

linearization theory. Results are presented for various

flow conditions, along with a comprehensive study of

the effects of inflow/outflow boundary conditions,
grid and CFL number.

For a subsonic inflow, the amplitudes of the incoming

unsteady characteristics (c t , cz, c_ are set to zero

and the outgoing characteristic (c ,) is computed

using Eq. 19. For subsonic outflow, c _ _ 0 and the
remaining characteristics are computed. Once the

characteristics are known, the perturbation variables

are found using an inverse transform:

Model Problem

Consider the unstaggered, fiat plate cascade

geometry shown in Figure la with a gap-to-chord
ratio of one. Uniform flow with M _ = 0.50 is used for

the steady flow. Small plunging oscillations with h _ =

0.001 and o = 90 degrees are used for all of the cases
presented. A semi-chord reduced frequency (k) of

four was chosen to simulate a realistic rotor/stator

frequency expected in advanced ducted propeller
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designs.Accordingtolineartheory,thisflow
conditionpropagatessinglemodepressurewaves
bothupstreamanddownstreamofthecascade.In
aeroacousticterminology,thisreferstoacasethatis
"cut-on"andinaeroelastieterminology,it iscalled
"super-resonant."Thisdefinesamodelproblemwith
aknownsolutionthatcanbeusedtostudywave
propagationusingCFD.

Theprocedureusedistofirstdetermine a steady

solution with no blade motion. For flat plates with
zero incidence, this reduces to uniform flow and can

be specified analytically. The unsteady solutions are

started with each plate moving according to the

specified interblade phase angle. Unless specified
otherwise, the maximum CFL number used in each

of the following solutions is unity. The numerical

solution runs until the unsteady surface pressures

reach periodicity. For the present study, the unsteady

pressures on the plate are Fourier transformed into

their real and imaginary parts after each cycle of

oscillation. The solution is stopped after the

coefficients from the first harmonic do not vary

significantly. This usually takes anywhere from 3 to 20

cycles of plate oscillation. The solutions presented

below are done on a CRAY-YMP computer and take

anywhere from 20 minutes to 5 hours of CPU time,

depending on the grid and time step.

Visualization of the Effects of Boundary

Conditions

A set of runs are done to visually demonstrate

pressure wave propagation and the importance of

using correct inflow and outflow unsteady boundary

conditions. Consider a uniformly spaced grid

(dx = dy = .05 chordlengths) with the inflow and
outflow boundaries located six chordlengths away

from the leading and trailing edges, respectively. The

grid resolution is too coarse for accurate

computations of surface pressures, but is sufficient

for visual demonstration of pressure wave

propagation to the far-field. Figure 1 (b-f) show

snapshots of static pressure contours just after the

plates are impulsively moved from uniform flow. The

amount of time between snapshots is approximately

constant and is arbitrarily denoted _ T, which gives

five instantaneous plots of pressure over enough time
for the downstream running wave to reach the

boundary. The left block uses the "reflective"

boundary conditions and the right block uses the

"non-reflective" boundary conditions. Since thc

"reflective" boundary conditions enforce constant

static pressure at the exit boundary, the downstream

running wave is reflected (Figure 1 e and O. As the

solution continues, the downstream domain is

contaminated with an upstream-running wave that is

non-physical for the desired solution. With proper

grid resolution, this wave enters the cascade and

affects the unsteady pressures on the plates.

Snapshots of static pressure contours are shown in

Figure 2 after twenty plate oscillation cycles. There
are four solutions shown; two of which are solutions

using the uniform grid with the "reflective" and

"non-reflective" boundary conditions shown in Figure

1. The remaining two solutions are using the

"reflective" boundary conditions on grids that coarsen

as they extend to the inlet and exit boundaries. Based

on the contours shown in Figure 1 for the "reflective"

boundary conditions, it is not surprising that the

outflow region looks so contaminated compared to

the "non-reflective" solutions after twenty plate

oscillation cycles. Coarsening the grid introduces

numerical dissipation into the solution that dampens

the waves as they propagate. (This has been

commonly used for isolated airfoil analysis). The grid
has been coarsened such that the resolution in the

passage is the same (dx= dy= .05 chordlengths), but

the aspect ratio of the cells gradually change to 3:1

(dx= .15,dy-.05) at the inflow and outflow

boundaries in one case (Figure 2 c) and 10:1

(dx=.50,dy= .05) in the other case (Figure 2 d). These

figures clearly demonstrate the effect of grid

coarsening, particularly for the upstream region

where shorter wavelengths are being resolved with

fewer grid points. Figure 3 shows the unsteady

pressure distributions on the plate after the solutions

have run twenty plate oscillation cycles. There is a
significant difference between the "reflective" case

and the "non-reflective" case using a uniform grid, as

would be expected based on the contour plots in
Figures 1 and 2. Also, the solutions using the grid

coarsening technique and "reflective" boundary

conditions tend toward the "non-reflective" boundary

conditions case using a uniform grid. It is expected

that grid coarsening will only work if the grid spacing

variation is smooth, as abrupt changes in the grid may
cause internal reflections.
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Effect of Boundary Distance From the
Cascade

An investigation of the effect of inflow and outflow

boundary distance from the cascade is done using

both the "reflective" and "non-reflective" boundary
conditions. The upstream and downstream

boundaries are placed 0.25, 0.5, 1.0, 1.5, and 2.0

chordlengths away from the leading and trailing

edges of the plates, respectively. The grid density is

refined to dx = dy--.02 chordlengths. Each case was

run through 20 cycles of oscillation to give the

unsteady pressure predictions shown in Figures 4 and

5. The results shown in Figure 4 use the "reflective"
boundary conditions and never reach a solution that

is independent of the boundary distance. In contrast,

the cases using the "non-reflective" boundary
conditions (Figure 5) are nearly identical when the

boundaries are 1.5 and 2.0 chordlengths away from

the cascade. This demonstrates the advantage of
using "non-reflective" boundary conditions for

reducing the computational domain.

Results from linear theory (ref.1) are also plotted in

Figures 4 and 5. The results using the "non-reflective"

boundary conditions that are independent of the
boundary distance are in general, but not exact

agreement with the theory (short dashed lines in

Figure 5). Since the theory is exact for flat plates, the
differences between the solutions are due to

numerical error. It will be demonstrated later that the

discrepancies are due to grid resolution. For now, the

study on the effect of boundary distance using

different inflow and outflow boundary conditions
should still be valid.

Effect of Boundary Conditions With Grid

Coarsening

The results shown in Figures 2 and 3 have already

demonstrated the effects of grid coarsening using the

"reflective" boundary conditions on a coarse grid.
Based on these results, damping the pressure waves

by coarsening the grid should render a solution
insensitive to either the "reflective" or "non-reflective"

boundary conditions. To verify this, another set of

solutions are considered using a finer grid near the
plates that smoothly coarsens to the inflow and

outflow boundaries. The same boundary distances of
six chordlengths upstream and downstream are used.

The grid density is dx = dy= .02 chordlengths in the

passage and coarsens to dx= .50 and dy= .02

chordlengths at the inflow and outflow boundaries.

The unsteady pressure distributions are plotted in
Figure 6 for solutions using both the "reflective" and

"non-reflective" boundary conditions, along with the

exact solution from linear theory. The solutions are

identical with each other and differ from the theory

by the same amount found in Figure 5 using the

"non-reflective" boundary conditions. Therefore, a

solution has been found that is not being influenced
by reflections from the inflow and outflow
boundaries.

Effect of Time Step (CFL Number)

All of the previous solutions were obtained using a

maximum CFL number of unity. For cases with
varying grid spacing, this means that the smallest cell

does not exceed a CFL number of one and the larger

ceils have a CFL number less than one. The grids
with uniform spacing have a CFL number of one for

every cell. Specifying a maximum CFL number of one
preserves, at least formally, the second-order

temporal accuracy of the numerical solution.

However, many unsteady solutions using a

time-marching code run higher CFL numbers to

reduce the run times. When this is done, an

assumption is made that the higher CFL numbers

occur only at the smaller cells and do not significantly

effect the global solution. The following solutions
show how bad this assumption can be if care is not

taken to ensure that the CFL number is small enough
to resolve the unsteady flow field.

A study of the effects of CFL number is done on two

types of grids; a uniformly spaced grid and a grid with

points clustered near the plates. The "non-reflecting"

boundary conditions are used in all of the remaining
results. The uniformly spaced grid (dx-- dy = .02

chordlengths) is identical to the one used in the study
of boundary distance effects with the boundary

located 0.5 chordlengths away from the cascade

(Figures 4 and 5). Unsteady pressure predictions
using three different values of CFL number are

shown in Figure 7. The results using a CFL number

of one are the same as those shown in Figure 5. The

good agreement with linear theory is fortuitous since

the predictions with a boundary distance of 0.5

chordlengths was found to be insufficient (see

discussion for Figure 5). Increasing the CFL number

to values of two and three introduces temporal error,
as expected. Using a CFL number of three

completely destroys the character of the unsteady
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waveforms.Forthiscase,twosolutionshavebeen
plottedaftertwentyandfortycyclesofplate
oscillationtoverifythatthesolutionhasreached
periodicity.

A similarstudyisshowninFigure8 for a grid that is

clustered in the y-direction. The spacing near the

plates is dx = .05, dy = .02 chordlengths and smoothly

varies to a spacing of dx = dy =.05 chordlengths at the
center of the passage. Hence, the maximum CFL

number occurs near the plates. The boundary

distance is 0.5 ehordlengths upstream and

downstream of the cascade. From the predictions
shown in Figure 8, clustering the grid near the surface

has helped preserve the character of the pressure

waves, but still quickly loses the accuracy for
maximum CFL numbers of two and three. It should

be noted that for a maximum CFL number of three,

the minimum CFL number is 0.4 on this grid. This

means that there is a portion of the grid that should

convect disturbances correctly near the center of the

passage. However, in the region of the grid near the

plates, which is where the unsteady disturbances are
being generated, the correct magnitude and phase are

not being computed. This is why the nature of the

disturbance is captured with a clustered grid, but the

accuracy is poor for higher CFL numbers. As

demonstrated in the next section, it is possible for

highly clustered grids to do a reasonable job of

predicting the unsteady flow field providing that an
adequate portion of the grid has a CFL number less

than unity.

Effects of GHd Density

Based on the studies presented above, it appears that
a clustered grid with a small CFL number is needed

to resolve the unsteady pressure waves. However,

running a maximum CFL number of unity on a highly

clustered grid would require extremely large amounts

of computational time. Therefore, it is desirable to

determine a balance between grid clustering and

maximum CFL number. Three grid densities (59 x 21,

121 x 41, 244 x 81) with clustering near the leading

and trailing edges (dx= .003, dy= .001 chordlengths)

are chosen to see if the correct magnitude and phase

of the unsteady pressure waves can be computed. The

grids are stretched six chordlengths upstream and

downstream of the cascade using the grid coarsening

technique. A maximum CFL number of ten is tried,

which occurs near the leading and trailing edges of
the plates. The CFL number quickly diminishes to

less than one away from the plates, leaving a large

percentage of the grid with an adequate time step to

resolve the unsteady flow. The stagger angle has

been changed from 0 to 5 degrees for reasons

discussed in the next section. Comparisons of the

unsteady pressure distributions are presented in

Figure 9 and show excellent agreement with linear

theory for grid densities of 121 x 41 and 244 x 81. It

appears that the 121 x 41 grid is sufficient for this
case. Also, clustering the grid near the plates is

essential for accuracy (ie. agreement with linear

theory). Obviously, it is not possible to determine an
optimal maximum CFL number for a specified grid

distribution since they are highly coupled and depend

on the nature of the unsteady flow field. However, it

is clear that each case being considered needs to be

tried on more than one grid with various levels of

clustering and at least two CFL numbers per grid.

(The message here is that what works for one set of

flow conditions will not necessarily work for another

set of flow conditions - a point that seems obvious,

but is often overlooked.)

Effects of Stagger A nile

The results shown for zero degree stagger have not

been in as good agreement with linear theory as

expected. A study of the effects of stagger angle on

the numerical solution are shown in Figure 10 using

the best grid distribution presented in the previous

section (121 x 41). Three stagger angles (0, 5, and 45

degrees) are presented and compared with linear

theory. By varying the stagger angle, the direction

and wavelength of the single mode pressure waves

propagating upstream and downstream are different.
This tests the numerical solutions for waves

propagating through the grid ceils from different
directions. The results show that the staggered results

are in good agreement with the theory, while the
unstaggered case shows small deviations near the

forward portion of the plate. It is not clear why the

results with zero degree stagger deviate from the

theory and why a small change in the stagger angle (5

degrees) significantly improves the predictions.

However, the results for staggered cascades shows

that good agreement with theory can be obtained for

cases with different directions of pressure wave

propagation.
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Effects of Oscillation Frequency

Finally, the effects of increasing the oscillation

frequency are determined by investigating values of k

= 6 and k = 8. Increasing the frequency causes

higher modes to propagate from the cascade, as

determined by linear theory. For all of the previous

cases with k = 4, single mode pressure waves

propagate upstream and downstream of the cascade

(cut-on for the fundamental wave number). If the

frequency of oscillation is increased to say k = 6, then

two modes propagate both upstream and

downstream, which corresponds to the fundamental

mode and its next harmonic. Similarly, increasing the

reduced frequency to 8 causes three modes

propagate. Increasing the oscillation frequency is an

easy way to systematically add modes to the flow field
for studying multi-mode, pressure wave propagation.

The higher frequencies and higher modes introduce
shorter wavelengths and requires freer grid

resolution. Based on the results in Figure 9, resolving

the higher modes will require a finer grid since the

121 x 41 grid was just fine enough to resolve the

single-mode wavelengths. Figure 11 shows the

predictions for three reduced frequencies and two

grid sizes (121 x 41 and 324 x 81). As expected, the

higher oscillation frequencies require finer grid
resolution. In fact, the 324 x 81 grid is still not fine

enough to resolve the waves near the forward portion
of the plate when k = 8. This demonstrates how

difficult it can be to model unsteady flow fields that

require accurate solutions for the higher harmonics.

Conclusions

An investigation of the unsteady flow field around an

oscillating cascade of fiat plates with zero stagger is

done using a time-marching Euler code. The study

demonstrates the importance of using proper

unsteady boundary conditions, grid resolution and

time step size to accurately model the unsteady flow

field. Imposing constant static pressure across the
outflow causes reflections from the downstream

boundary and is shown by plotting pressure contours
at various times. These reflections contaminate the

unsteady pressure distributions on the plates. A study

on the effect of boundary distance shows that the
unsteady plate pressures never reach a solution that is

independent of boundary distance when reflective

boundary conditions are used. Using approximate

non-reflecting boundary conditions based on linear

theory improves the solutions and allows the

boundaries to be placed closer to the cascade

(approximately 1.5 to 2 chordlengths away from the

cascade). Coarsening the grid by stretching the

boundaries away from the cascade introduces

numerical damping into the computational domain
and is also an effective way to reduce reflections from

the boundaries, although this method can only be

used when simdafing blade motion for a single blade

row since all disturbances are damped. These
solutions are insensitive to "reflecting" or

_non-reflecting" boundary conditions.

Several solutions are presented that vary the time

step size on both a clustered grid and a uniformly
spaced grid. The results show that the unsteady flow

field becomes significantly inaccurate as the CFL

number exceeds one on a uniformly spaced grid. The

clustered grid results do a better job of capturing the
flow, but still become inaccurate as the CFL number

is increased. Good agreement with linear theory is

found on highly clustered grids that stretch six

chordlengths upstream and downstream from the

cascade (grid coarsening). For these cases, the
maximum CFL number was ten and quickly

diminished to less than one away from the plates.

Predictions for various stagger angles and plate

oscillation frequencies show good agreement with

linear theory as long as the grid is properly resolved

and the CFL number is sufficiently small. Since the

wave characteristics vary with different flow

conditions, it is difficult to generalize CFL number

and grid resoluton requirements. The results

presented in this paper should serve as a guide for

determining initial guesses for these requirements,

but they also demonstrate the importance of
investigating more than one run for each flow
condition to validate numerical solutions.
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a) Non-reflective boundary conditions, uniform grid.

b) Reflective boundary conditions, uniform grid.

c) Reflective boundary conditions, grid coarsening 3:1.

d) Reflective boundary conditions, grid coarsening 10:1.

Figure 2. Static pressure contours after twenty
cycles of plate oscillations.
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